Prévision à Court Terme en Temps Réel de L'épidémie de Covid-19 à Cuba en Utilisant la Modélisation
DOI:
https://doi.org/10.18559/RIELF.2023.1.3Słowa kluczowe:
COVID-19, modèles phénoménologiques, prévision en temps réel, taille finale, modélisationAbstrakt
En l'absence d'information fiable sur les mécanismes de transmission d'une infection émergente, de simples modèles phénoménologiques peuvent apporter une estimation précoce de l'étendue potentielle d'épidémies en temps réel. Un avertissement sur la taille finale d'une épidémie et en particulier de la COVID-19 actuellement actif peut servir aux autorités sanitaires pour y faire face. Une variété de modèles non-linéaires ont été développés pour définir les cas cumulés de maladies épidémiques infectieuses (e.g. Richards, logistique, modèles Gompertz). Tous ces modèles peuvent utiliser correctement les données pour obtenir des prévisions à court terme en temps réel. Typiquement, il s'agit de suivre la procédure d'estimation post-sélection, i.e., de sélectionner un modèle parmi tous ceux disponibles et d'ignorer ceux reposant sur l'incertitude dans l'estimation et l'inférence vu que ces procédures sont basées sur un seul modèle. Dans ce travail, nous établissons une prédiction en temps réel de la taille finale, point crucial de l'épidémie, et des prévisions 10 jours à l'avance de cas cumulatifs en utilisant plusieurs modèles non-linéaires où ces paramètres sont estimés via modélisation. La méthode est appliquée à l'épidémie de COVID-19 en 2020 à Cuba.(abstrakt oryginalny)
Downloads
Pobrania
Opublikowane
Jak cytować
Numer
Dział
Licencja
Prawa autorskie (c) 2023 Poznań University of Economics and Business
Utwór dostępny jest na licencji Creative Commons Uznanie autorstwa 4.0 Międzynarodowe.
Lorem ipsum dolor sit amet quam leo, cursus vitae, commodo convallis consequat. Donec pulvinar porta neque, blandit risus commodo sit amet ante. Quisque condimentum. Donec orci interdum euismod scelerisque tincidunt. Maecenas vitae mi. Pellentesque orci vitae nunc venenatis tristique, convallis accumsan, dolor sit amet metus. Curabitur tempor. Phasellus sem. Quisque.